Abstract

Generation of elastic waves is a major issue in nondestructive testing. Structural health monitoring of a thin element can be achieved through the analysis of its resonance spectrum. A time reversal mirror (TRM) operating in the audible frequency range (1-10 kHz) is used to remotely excite thin resonant elastic elements. The generation of elastic waves is studied with respect to the geometry of the TRM. It is observed that the quality of focusing only weakly depends on the number of loudspeakers (LS) in the TRM. When the air/plate coupling is at its maximum, the energetic efficiency of the TRM is estimated to be about 0.02%. The TRM is shown to efficiently and selectively excite a small structure embedded in a complex environment such as a hollow cylinder. Finally, the results are discussed in light of the DORT method (French acronym for "decomposition of the time reversal operator"). In particular, the optimal LS placement and emission signals in this configuration to excite individual eigenmodes of a plate is determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.