Abstract

We studied selective reflection (SR) of laser radiation from a window of a nanocell with thickness L ~ λ1,2/2 filled with Rb and Cs atoms, where λ1 = 780 nm and λ2 = 852 nm are the wavelengths resonant with the D2 laser lines for Rb and Cs, respectively. It is demonstrated that the negative derivative of the SR signal profile for L > λ/2 changes to the positive one for L < λ/2. It is shown that the real-time formation of the SR signal profile derivative (SRD) with the spectral width 30–40 MHz and located at the atomic transition is, in particular, a convenient frequency marker of D2 transitions in Rb and Cs. The amplitudes of SRD signals are proportional to the atomic transition probabilities. A comparison with the known saturated absorption (SA) method demonstrated a number of advantages, such as the absence of cross-over resonances in the SRD spectrum, the simplicity of realization, a low required power, etc. An SRD frequency marker also operates in the presence of the Ne buffer gas at a pressure of 6 Torr, which allowed us to determine the Ne–Rb collisional broadening, whereas the SA method is already inapplicable at buffer gas pressures above 0.1 Torr. The realization simplicity makes the SRD method a convenient tool for atomic spectroscopy. Our theoretical model well describes the SRD signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.