Abstract

Manganese–cerium mixed oxide catalysts with different molar ratio Mn/(Mn+Ce) (0, 0.25, 0.50, 0.75, 1) were prepared by citric acid method and investigated concerning their adsorption behavior, redox properties and behavior in the selective catalytic reduction of NOx by NH3. The studies based on pulse thermal analysis combined with mass spectroscopy and FT-IR spectroscopy uncovered a clear correlation between the dependence of these properties and the mixed oxide composition. Highest activity to nitrogen formation was found for catalysts with a molar ratio Mn/(Mn+Ce) of 0.25, whereas the activity was much lower for the pure constituent oxides. Measurements of adsorption uptake of reactants, NOx (NO, NO2) and NH3, and reducibility showed similar dependence on the mixed oxide composition indicating a clear correlation of these properties with catalytic activity. The adsorption studies indicated that NOx and NH3 are adsorbed on separate sites. Consecutive adsorption measurements of the reactants showed similar uptakes as separate measurements indicating that there was no interference between adsorbed reactants. Mechanistic investigations by changing the sequence of admittance of reactants (NOx, NH3) indicated that at 100–150°C nitrogen formation follows an Eley–Rideal type mechanism, where adsorbed ammonia reacts with NOx in the gas phase, whereas adsorbed NOx showed no significant reactivity under conditions used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.