Abstract

Reducing nitro compounds to amines is a fundamental reaction in producing valuable chemicals in industry. Herein, the synthesis and characterization of a zirconium metal-organic framework-supported salicylaldimine-cobalt(II) chloride (salim-UiO-CoCl) and its application in catalytic reduction of nitro compounds are reported. Salim-UiO-Co displayed excellent catalytic activity in chemoselective reduction of aromatic and aliphatic nitro compounds to the corresponding amines in the presence of phenylsilane as a reducing agent under mild reaction conditions. Salim-UiO-Co catalyzed nitro reduction had a broad substrate scope with excellent tolerance to diverse functional groups, including easily reducible ones such as aldehyde, keto, nitrile, and alkene. Salim-UiO-Co MOF catalyst could be recycled and reused at least 14 times without noticeable losing activity and selectivity. Density functional theory (DFT) studies along with spectroscopic analysis were employed to get into a comprehensive investigation of the reaction mechanism. This work underscores the significance of MOF-supported single-site base-metal catalysts for the sustainable and cost-effective synthesis of chemical feedstocks and fine chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.