Abstract

1. The effects of 1,3-di(2-tolyl)guanidine (DTG) were examined on the responses of cultured hippocampal neurones to the excitatory amino acid analogues N-methyl-D-aspartate (NMDA), kainate, quisqualate and (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA). 2. In rat hippocampal neurones loaded with the Ca(2+)-sensitive dye Fura-2, DTG (10-100 microM) produced a concentration-dependent depression of the NMDA-evoked rises in intracellular free calcium ([Ca2+]i), an effect that was not modified by changes in the extracellular glycine concentration. DTG (at 50 and 100 microM) also attenuated, although to a lesser extent, the rises in [Ca2+]i evoked by naturally-derived quisqualate. In contrast, 50 and 100 microM DTG did not depress responses evoked by kainate, AMPA and synthetic, glutamate-free (+)-quisqualate although on occasions DTG enhanced kainate- and AMPA-evoked rises in [Ca2+]i. 3. DTG attenuated NMDA-evoked currents recorded from mouse hippocampal neurones under whole-cell voltage-clamp with an IC50 (mean +/- s.e. mean) of 37 +/- 5 microM at a holding potential of -60 mV. The DTG block of NMDA-evoked responses was not competitive in nature and was not dependent on the extracellular glycine or spermine concentration. The block did, however, exhibit both voltage-, and use-, dependency. The steady-state current evoked by naturally-derived quisqualate was also attenuated by DTG whereas those evoked by kainate and AMPA were not. 4. We conclude that DTG, applied at micromolar concentrations, is a selective NMDA antagonist in cultured hippocampal neurones, the block exhibiting both Mg(2+)- and phencyclidine-like characteristics. Given the nanomolar affinity of DTG for sigma binding sites it is unlikely that the antagonism observed here is mediated by sigma-receptors, but the data emphasize the potential danger of ascribing the functional consequences of DTG administration solely to sigma receptor-mediated events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.