Abstract

Here, we report a molecular method for the generally applicable reduction of mono- and dicarboxylic acids that selectively furnishes a diverse variety of alcohols, including mono- and diols. One of the inherent drawbacks of the direct hydrogenation of carboxylic acids to alcohols is the in situ formation of the corresponding esters via condensation of the carboxylic acids with the produced alcohols. Especially, the hydrogenation of polycarboxylic acids frequently suffers from the formation of a complex mixture of oligomeric esters. This issue was successfully overcome by the combined use of a dual catalyst that consists of a bulky (PNNP)iridium complex and a Lewis acid. Owing to the steric bulk and robustness of the iridium catalyst, the main role of the Lewis acid is to independently catalyze the esterification, albeit the cooperative activation of (a resting state of) the iridium catalyst by the Lewis acid also seems to be implied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.