Abstract

In this work we have found, that the water-soluble cis,mer-[IrH2Cl(mtppms)3] (mtppms = monosulfonated triphenylphosphine Na-salt) was an excellent catalyst for reduction of terminal alkynes by hydrogen transfer from aqueous HCOOH/HCOONa mixtures. The conversions strongly depended on the pH of the reaction mixtures, and the highest rate of phenylacetylene transfer hydrogenation was observed at pH 3. The same dihydrido-Ir(III) complex actively catalyzed also the hydrogenation of terminal alkynes under mild conditions (T = 50 °C; P(H2) = 2–10 bar). Importantly, both the hydrogenation and hydrogen transfer reductions afforded exclusively the corresponding alkenes as products. Phenylacetylene and its substituted derivatives reacted smoothly, while benzylic and aliphatic alkynes were less reactive or did not react at all. It was also found, that an excess of the mtppms ligand inhibited the reaction. This was rationalized by formation of cisz-[IrH2(mtppms)4]+ which was also confirmed with multinuclear NMR spectroscopy. On the basis of the experimental results, a joint mechanism was suggested for both the hydrogenation and transfer hydrogenation pathways. The mechanism of hydrogenation and transfer hydrogenation of phenylacetylene was also studied by DFT calculations, which revealed several possibilities for protonation of a vinyl intermediate as the crucial step in formation of the styrene product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call