Abstract
Dip-pen nanolithography (DPN) is employed to develop a generic array platform for the selective recruitment of membrane protein complexes. An atomic force microscope tip inked with HS(CH2)16NH2 is used to generate amino-terminated domains on gold. These domains can be arranged into microscopic and submicroscopic patterns, and the untreated gold substrate is subsequently blocked with HS(CH2)2CONH(CH2CH2O)15CH3, a compound known to resist the unspecific binding of proteins and cells. The patterned gold substrate is exposed to an enriched membrane fraction from mutant Rhodobacter sphaeroides, which contains photosynthetic core complexes consisting of the reaction center and the light-harvesting complex LH1. The selective recruitment to the patterned domains, governed primarily by electrostatic interactions, is confirmed by contact mode atomic force microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.