Abstract
A new approach for the thermal reduction of tin dioxide (SnO2) in the carbon/sodium sulfite (Na2SO3) system is demonstrated. The process of tin smelting was experimentally optimized by adjusting the smelting temperature and amounts of the chemical components used for the thermal reduction of SnO2. The numbers obtained are consistent with the thermodynamic characteristics of the system and molar fractions of reactants derived from the proposed mechanism of the SnO2 thermal reduction process. They reveal that the maximum yield of tin is obtained if masses of C, Na2SO3 and SnO2 are approximately in the ratio 1:2:3 and the temperature is set to 1050 °C. The key role in the suggested mechanism is the thermal decomposition of Na2SO3. It was deduced from the available experimental data that the produced sulfur dioxide undergoes carbothermic reduction to carbonyl sulfide—an intermediate product involved in the bulk reduction of SnO2. Replacing sodium sulfite with sodium sulfate, sodium sulfide and even elemental sulfur practically terminated the production of metallic tin. The kinetic analysis was focused on the determination of the reaction orders for the two crucial reactants involved in the smelting process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.