Abstract

A hybrid process combining solubilization via sulfuric acid produced by sulfur-oxidizing bacteria with precipitation via sulfide produced by sulfate-reducing bacteria was investigated to isolate soil-borne metal contaminants as purified metal-sulfides. The highly efficient two-step acidification process involved bioproduction of sulfuric acid in a culture medium containing 30% (v/v) of sludge filtrate (SF). Soil was added to the culture after maximum acid production. Solubilization efficiencies of 95% for Zn, 76% for Cu and 97% for Cd were achieved after 16days. At pH 1.9, 3.0 and 4.0, 99% of Cu2+, 96% of Cd3+ and 93% of Zn2+, respectively, were precipitated from the soil leachate by sulfide transported from sulfidogenic bioreactor via N2 sparging, resulting in final effluent metal contents at the ppb-level. The introduction of SF did not affect the precipitation kinetics and purity of the recovered precipitates. Ultimately, 75% of Cu and 86% of Zn were recovered from the soil as pure CuS and ZnS (confirmed by SEM–EDS and XRD). These results demonstrate the potential of the integrated method for the selective production of valuable metals from metal contamination in soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.