Abstract

The recovery of spent lithium-ion batteries by traditional acid leaching is limited by serious pollution, complicated technology, and the low purity of Li2CO3. To address the problems of the traditional acid leaching process and increasing demand for decarbonization, a technique for the selective carbonation leaching of Li and the recovery of battery-grade Li2CO3 by a simple concentration precipitation process without acids or bases was developed. The coupling of CO2 and reducing agents could effectively promote the precipitation of MCO3 (M=Ni/Co/Mn) and the selective leaching of Li by decreasing the reducing capability needed for transition metals and decreasing the pH of the solution. The optimal selective leaching process of Li was obtained under 1 MPa CO2 with 20 g/L Na2S2O3 at an L/S ratio of 30 mL/g for 1.5 h. FT-IR, XRD, ICP-MS and other methods were used to reveal the multiphase interfacial reaction mechanism of the carbonation reduction of layered cathode materials, which indicated that the reducing agent Na2S2O3 could promote lattice distortion of the cathode materials and effective separation of Li. In summary, a green and economical method for the selective recovery of battery-grade Li2CO3 using a one-step method of CO2 carbonation recovery in a near-neutral environment was proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.