Abstract

Thioflavin T (ThT) has been widely utilized as a fluorescent marker for amyloid fibrils. However, the use of ThT as an efficient reporter for a specific DNA structure still remains in question. Here, we report that the fluorescence intensity of ThT is obviously enhancement in when it binds to ds-DNAs which contain cavity structures such as an abasic site, gap site or mismatch site. Such enhancement in fluorescence cannot be achieved for DNA without these cavity structures. The DNA cavities provide appropriate spaces to accommodate ThT and allow the occurrence of some specific interactions. The stacking interaction of the bound ThT with the cavity context bases is the main driving force for ThT binding to the cavities. This interaction restricts the excited state's rapid torsional rotation around the single C-C bond between the benzothiazole and dimethylaminobenzene moieties and thus results in a decreased population of the nonradiative twisted internal charge-transfer (TICT) state. It is impossible for this stacking interaction to occur in DNA without these cavities. This property can be used to recognize DNA cavities with high selectivity and sensitivity. We expect that the ability of ThT to target these DNA structures has the potential to be developed into practical and functional biomaterials for DNA sensors or devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.