Abstract

Three kinds of molecularly imprinted polymers (MIPs) were obtained with surface molecular imprinting technique on functionalized potassium tetratitanate whisker (F-PTW). The results of adsorption experiments indicated that MIP prepared using PTW modified with N-(2-aminoethyl)-3-(trimethoxysilyl)propylamine (AAPTS) (F-PTW A) as support [MIP(1)] was superior to the other two polymers, then MIP(1) was selected to analyze the 4-nitrophenol (4-NP) adsorption process from aqueous solution in this study. AAPTS offered hydrophilic exterior that allowed to self-assemble with the template 4-NP through intermolecular interaction rather than based on the interactions between the functional monomers and template. Equilibrium adsorption data were analyzed by the Langmuir and Freundlich isotherm models at various temperatures. Kinetic properties were successfully investigated by pseudo-first-order model, pseudo-second-order model, intraparticle diffusion equation, initial adsorption rate, half-adsorption time. A diffusion-controlled process as the essential adsorption rate-controlling step was also proposed. The performance of such imprinted polymer was further demonstrated by high-performance liquid chromatography, and the results showed that the selectivity of MIP(1) exhibited higher affinity for template 4-NP over competitive phenolic compounds than that of non-imprinted polymer NIP(1). MIP(1) could be reused four times without significant loss in the adsorption capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.