Abstract

AbstractUnravelling the structural features of carbohydrate recognition by receptors is a topic of major interest. In recent years, several synthetic receptors capable of binding different sugars with moderate to good affinities and selectivities have been developed. Here we report on the analysis of the three‐dimensional structures of the complexes of two recently derived synthetic tripodal receptors with octyl β‐D‐mannopyranoside, a monosaccharidic glycoside selectively recognized in a polar solvent, by a combination of NMR methods and assisting molecular mechanics calculations. The variations in the chemical shifts upon complexation and the observed intermolecular NOEs were employed to validate the molecular‐mechanics‐derived structures. The structures of the obtained complexes explain the observed mannose selectivity in chemical terms, suggesting that a combination of van der Waals, CH–π and hydrogen‐bonding forces are involved in the formation of the complexes, together with stabilizing conformational effects of the substituents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.