Abstract
The DNA of Bacillus subtilis bacteriophage SP10 is partially resistant to cleavage and methylation in vitro by restriction enzyme R . BsuRI and its cognate methylase even though greater than 20 copies of the target sequence, 5' ... GGCC ... 3', are present on the phage genome. YThy, a hypermodified oxopyrimidine that replaces a fraction of the thymine residues in SP10 DNA, was responsible for this protection, since YThy-free DNA was no longer resistant. Sites that were normally resistant could nevertheless be cleaved or methylated in vitro if the salt concentration was reduced or dimethyl sulfoxide was added to the reaction buffer. Analysis of the termini produced by cleavage suggested that resistant sites occurred in the sequence 5' ... GGCC-YThy ... 3', whereas sensitive sites, of which there were only two per genome, occurred in the sequence 5' ... GGCCG ... 3'. These in vitro results provide an explanation for the in vivo resistance of SP10 to restriction-modification by B. subtilis R. They also suggest ways in which the presence of the atypical base YThy in regions that flank the target might upset critical DNA-enzyme interactions necessary to locate and recognize the specific site of cleavage or methylation. YThy also strongly protected 5' ... GCNGC ... 3' (R . Fnu4HI) sequences on SP10 DNA, but the biological relevance of this protection is unclear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.