Abstract
Retinol is a fat-soluble vitamin A that is widely used in the food and pharmaceutical industries. Currently, retinol is commercially produced by chemical synthesis. Microbial production of retinol has been alternatively explored but restricted to a mixture of retinoids including retinol, retinal, and retinoic acid. Thus, we introduced heterologous retinol dehydrogenase into retinoids mixture-producing Saccharomyces cerevisiae for the selective production of retinol using xylose. Expression of human RDH10 and Escherichia coli ybbO led to increasein retinol production, but retinal remained as a major product. In contrast, S. cerevisiae harboring human RDH12 produced retinol selectively with negligible production of retinal. The resulting strain (SR8A-RDH12) produced retinol only. However, more glycerol was accumulated due to intracellular redox imbalance. Therefore, Lactococcus lactis noxE coding for H2 O-forming NADH oxidase was additionally introduced to resolve the redox imbalance. The resulting strain produced 52% less glycerol and more retinol with a 30% higher yield than a parental strain. As the produced retinol was not stable, we examined culture and storage conditions including temperature, light, and antioxidants for the optimal production of retinol. In conclusion, we achieved selective production of retinol efficiently from xylose by introducing human RDH12 and NADH oxidase into S. cerevisiae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.