Abstract

Furfural is a high-value compound that can be prepared by catalytic pyrolysis of biomass. In order to improve the selectivity of furfural in the process of cellulose catalytic pyrolysis, the ammonia-modified HZSM-5 (N-HZSM-5) was used as the catalyst for experimental research on a horizontal fixed bed. The effects of different nitriding temperatures and times on N-HZSM-5, and the effects of different catalyst to cellulose (CA to CL) ratios on furfural selectivity were evaluated. The results showed that N-HZSM-5 can effectively improve the selectivity for furfural. At the optimal conditions (nitriding temperature: 800 °C, nitriding time: 6 h, CA to CL ratio: 4), the selectivity of furfural was up to 24%, which was much higher than those of noncatalytic pyrolysis (1.2%) and HZSM-5 catalytic pyrolysis (3.6%). In order to better evaluate the performance of the catalyst, a series of characterizations were carried out on the N-HZSM-5. The results showed that compared with HZSM-5, N-HZSM-5 had an increased pore size, it was less acidic, and it had more uniform surface acidity. It was conducive to the selective formation of furfural. Therefore, the ammonia-modification can effectively control the structure and acidity of HZSM-5, and N-HZSM-5 exhibits a non-negligible potential in catalyzing the pyrolysis of cellulose for furfural.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call