Abstract

Bio-polymeric based nano-composites and hydrogels are newsworthy nano-biomaterials. Herein, crystalline or fibrous nano-cellulose carboxylate (NCCC and NCCF) were selectively prepared via the controllable direct oxidative-hydrolysis of MC in alkaline NaClO2 at 1:2 mol ratio, 90 °C, and 24 h for NCCC and at 1:1 mol ratio, 70 °C, and 20 h for NCCF. Characterization of NCCC and NCCF were performed by comparative Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and energy dispersive X-ray spectroscopy (EDS). Then, NCCC was cross-linked to the recycled gelatin (Gel) from the medicine capsules and the as-prepared nano-ZnO by maleic anhydride (MA) to give the novel hydrogel Gel/MA/NCCC/nano-ZnO. Nano-ZnO plays multi-roles in this hydrogel preparation, as either catalyst for the esterification of cellulose hydroxyls and amidation of gelatin amino groups or as the anti-bacterial part of hydrogel. The in vitro anti-bacterial activity results against the three gram-negative and gram-positive bacteria by well diffusion method confirmed Gel/MA/NCCC/nano-ZnO as an antibacterial agent with the activity order of P. aeruginosa > S. aureus > E. coli. The top anti-bacterial activity of this hydrogel against the gram-negative resistant bacteria of P. aeruginosa suggests its potential for biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call