Abstract

Although predation is thought to affect species divergence, the effects of predator‐mediated natural selection on species divergence and in nonadaptive radiations have seldom been studied. Wing melanization in Calopteryx damselflies has important functions in sexual selection and interspecific interactions and in species recognition. The genus Calopteryx and other damselfly genera have also been put forward as examples of radiations driven by sexual selection. We show that avian predation strongly affects natural selection on wing morphology and male wing melanization in two congeneric and sympatric species of this genus (Calopteryx splendens and Calopteryx virgo). Predation risk was almost three times higher for C. virgo, which has an exaggerated degree of wing melanization, than it was for the less exaggerated, sympatric congener C. splendens. Selective predation on the exaggerated species C. virgo favored a reduction and redistribution of the wing melanin patch. There was evidence for nonlinear selection involving wing patch size, wing patch darkness, and wing length and width in C. splendens but weaker nonlinear selection on the same trait combinations in C. virgo. Selective predation could interfere with species divergence by sexual selection and may thus indirectly affect male interspecific interactions, reproductive isolation, and species coexistence in this genus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call