Abstract

We report on the photocurrent generation in HfO2-carbon nanotube (CNT) nanocomposites under Ultra-Violet (UV) and visible excitations at zero bias. Cubic phase HfO2 nanoparticles have been combined with multi-walled carbon nanotubes in this work. The cubic phase of HfO2 has been stabilized by oxygen vacancies which act as luminescent band gap states. In a broad UV–visible range of below band gap photoexcitation, a photocurrent is generated which was found to be most efficient under UV illumination. We discuss the possible mechanism in terms of a CNT assisted charge transfer involving optically active surface states of the HfO2 nanoparticles. The abrupt generation and relaxation responses of the photocurrent on/off cycles along with a constant steady state current as high as 200 nA for 1 mg of the nanocomposite, has potential in energy harvesting and other applications requiring stable charge retention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.