Abstract

For several decades reactive oxygen species have been applied to water quality engineering and efficient disinfection strategies; however, these methods are limited by disinfection byproduct and catalyst-derived toxicity concerns which could be improved by selectively targeting contaminants of interest. Here we present a targeted photocatalytic system based on the fusion protein StrepMiniSOG that uses light within the visible spectrum to produce reactive oxygen species at a greater efficiency than current photosensitizers, allowing for shorter irradiation times from a fully biodegradable photocatalyst. The StrepMiniSOG photodisinfection system is unable to cross cell membranes and like other consumed proteins, can be degraded by endogenous digestive enzymes in the human gut, thereby reducing the consumption risks typically associated with other disinfection agents. We demonstrate specific, multi-log removal of Listeria monocytogenes from a mixed population of bacteria, establishing the StrepMiniSOG disinfection system as a valuable tool for targeted pathogen removal, while maintaining existing microbial biodiversity.

Highlights

  • Disinfection strategies employing photosensitizing agents have been used in a clinical setting to treat periodontitis [1]; and extended to water treatment applications, using porphyrins [2] chlorins [3], and nanoparticles as the antimicrobial agents, with the latter being the most popular [4,5,6,7,8,9]

  • This study introduces a novel, targeted protein photodisinfection system based on StrepMiniSOG (SMS), a 1O2 generating fluorescent protein with biotin binding capabilities created from the Light-Oxygen-Voltage domain of Arabidopsis thaliana and streptavidin [48,49]

  • The SMS-antibody based disinfection system presented here allows for amplification of reactive oxygen species (ROS) to efficiently remove bacteria from solution

Read more

Summary

Introduction

Disinfection strategies employing photosensitizing agents have been used in a clinical setting to treat periodontitis [1]; and extended to water treatment applications, using porphyrins [2] chlorins [3], and nanoparticles as the antimicrobial agents, with the latter being the most popular [4,5,6,7,8,9]. Despite the popularity and demonstrated efficacy of nanoparticles, an increasing body of evidence is revealing the carcinogenic and cytotoxic properties of these materials [19,20], which are readily transported and can persist in environmental water [21] negatively impacting populations of aquatic organisms [22,23,24], representing a danger to the very water they disinfect. Phage treatments are limited by the rapid coevolution of resistant bacteria [34], which quickly render the therapeutic agent ineffectual

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call