Abstract

CD8(+) T cells respond to TCR stimulation by producing proinflammatory cytokines, and destroying infected or malignant cells through the production and release of cytotoxic granules. Scaffold protein Discs large homolog 1 (Dlg1) specifies TCR-dependent functions by channeling proximal signals toward the activation of p38-dependent proinflammatory cytokine gene expression and/or p38-independent cytotoxic granule release. Two Dlg1 variants are expressed in CD8(+) T cells via alternative splicing, Dlg1AB and Dlg1B, which have differing abilities coordinate TCR-dependent functions. Although both variants facilitate p38-independent cytotoxicity, only Dlg1AB coordinates p38-dependent proinflammatory cytokine expression. In this study, we identify TCR-induced Dlg1 tyrosine phosphorylation as a key regulatory step required for Dlg1AB-mediated p38-dependent functions, including proinflammatory cytokine expression. We find that Dlg1AB but not Dlg1B is tyrosine phosphorylated by proximal tyrosine kinase Lck in response to TCR stimulation. Furthermore, we identify Dlg1 tyrosine 222 (Y222) as a major site of Dlg1 phosphorylation required for TCR-triggered p38 activation and NFAT-dependent expression of proinflammatory cytokines, but not for p38-independent cytotoxicity. Taken together, our data support a model where TCR-induced phosphorylation of Dlg1 Y222 is a key point of control that endows Dlg1AB with the ability to coordinate p38 activation and proinflammatory cytokine production. We propose blocking Dlg1AB phosphorylation as a novel therapeutic target to specifically block proinflammatory cytokine production but not cytotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.