Abstract

Mixed micelles containing Nonidet P40 (NP-40) (829 microM or 4.8 mM), phosphatidylserine (PS) (14.5 or 8 mol%), and 1,2-diacylglycerol (DG) (0.5 or 1 mol%) when preincubated with protein kinase C (PKC) assay mixture containing cationic substrate and CaCl2 (400 microM) formed aggregates in a time-, temperature-, and substrate concentration-dependent manner with a t1/2 approximately 3-12 min (22 degrees C). Concomitant with the formation of these aggregates there was a substantial loss of substrate phosphorylation catalyzed by the Ca(2+)-dependent PKC alpha, beta, and gamma but not the Ca(2+)-independent PKC, delta and epsilon. All cationic PKC substrates tested, neurogranin peptide analog, neurogranin, and histone III-S, formed aggregates with PS/DG/NP-40/Ca2+ mixed micelles in a time-dependent fashion. The poly(cationic-anionic) PKC substrate protamine sulfate also forms aggregates with the mixed micelles in the presence of Ca2+, but without affecting the substrate phosphorylation by the kinase. Under similar conditions, but at 4 degrees C, neither aggregation nor loss of cationic substrate phosphorylation was observed. Another nonionic detergent, octyl glucoside, behaved similarly to NP-40. Phosphatidylinositol (PI) and phosphatidylglycerol like PS, were effective in forming aggregates with NP-40/cationic polypeptide/DG/Ca2+ as monitored by light scattering, yet without affecting substrate phosphorylation. Phosphorylation of cationic substrates by M-kinase, derived from trypsinized PKC beta, was also greatly diminished by the aggregation. In contrast, [3H]phorbol 12,13-dibutyrate binding to PKC beta was unaffected. Formation of the aggregates that were selectively utilized by the Ca(2+)-independent PKCs was dependent on the ratio of cationic substrate to the number of mixed micelles.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.