Abstract

Exosomes also termed small extracellular vesicles (sEVs) are important mediators of intercellular communication in many physiological and pathological processes such as protein clearance, immunity, infections, signaling, and cancer. Elevated circulating levels of exosomes have been linked to some viral infections, aggressive cancer, and neurodegenerative diseases. Some pharmacological compounds have been demonstrated to effectively inhibit exosome production pathways. There are very few studies on exosome inhibition and how they influence pathophysiological conditions. MethodsIn the current study, we examined how inhibition of extracellular vesicle release and/or uptake would impact the exosome formation pathway. Using a constellation of improved EV experimental approaches, we evaluated the concentration-based cytotoxicity effects of pharmacological agents (ketoconazole, climbazole, and heparin) on Human Lung Carcinoma (A549) cell viability. We investigated the effect of inhibitor dosages on exosome production and release. Analysis of exosome inhibition includes quantitative analysis and total protein expression of exosome release after pharmacological inhibition; we examined exosome protein level after inhibition. ResultsSelective inhibition of exosomes altered particle sizes, and heparin significantly reduced the total exosomes released. Climbazole and heparin undermined membrane-bound tetraspanin CD63 expression and significantly disrupted ALIX protein (p ≤ 0.0001) and TSG101 (p ≤ 0.001). Azoles and heparin also disrupt transmembrane trafficking by modulating Ras binding protein (p ≤ 0.001). ConclusionThese findings revealed that pharmacological inhibition of exosomes regulates the endocytic pathway and expression of endosomal sorting complex required for transport mediators, suggesting climbazole and heparin as effective inhibitors of exosome synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.