Abstract
Both the formation of long-term memory (LTM) and late-long-term potentiation (L-LTP), which is thought to represent the cellular model of learning and memory, require de novo protein synthesis. The mammalian target of Rapamycin (mTOR) complex I (mTORC1) integrates information from various synaptic inputs and its best characterized function is the regulation of translation. Although initial studies have shown that rapamycin reduces L-LTP and partially blocks LTM, recent genetic and pharmacological evidence indicating that mTORC1 promotes L-LTP and LTM is controversial. Thus, the role of mTORC1 in L-LTP and LTM is unclear. To selectively inhibit mTORC1 activity in the adult brain, we used a "pharmacogenetic" approach that relies on the synergistic action of a drug (rapamycin) and a genetic manipulation (mTOR heterozygotes, mTOR(+/-) mice) on the same target (mTORC1). Although L-LTP and LTM are normal in mTOR(+/-) mice, application of a low concentration of rapamycin-one that is subthreshold for WT mice-prevented L-LTP and LTM only in mTOR(+/-) mice. Furthermore, we found that mTORC1-mediated translational control is required for memory reconsolidation. We provide here direct genetic evidence supporting the role of mTORC1 in L-LTP and behavioral memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.