Abstract

A rational design of anion-exchange materials for the selective elimination of radioactive anionic contaminants poses a great challenge. Rather than relying on a size-compatible effect, the combination of a nano-sieve pore, hydrophobic cationic cavity, and soft-acidic open metal sites within one sorbent is an emerging strategy for meeting the requirement. Here, we designed a porous cationic Ag(I) metal-organic framework (MOF), TNU-132, which combined multiple features and showed superior perrhenate/pertechnetate capture selectivity in the presence of a large excess of 300-fold NO3- and 2000-fold SO42-. The mechanism of this high selectivity can be well elucidated by the anion exchange experiments of TNU-132 in the Cr2O72-/ReO4- mixture. That is, the separation process underwent two sequential steps, the nano-sieving procedure and then a reconstruction process in the crystalline sorbent. These results were further confirmed by scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDS), and/or single-crystal X-ray diffraction (SC-XRD) of oxoanion-loaded materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.