Abstract
The need for energy-efficient recovery of organic solutes from aqueous streams is becoming more urgent as chemical manufacturing transitions toward nonconventional and bio-based feedstocks and processes. In addition to this, many aqueous waste streams contain recalcitrant organic contaminants, such as pharmaceuticals, industrial solvents, and personal care products, that must be removed prior to reuse. We observe that rigid carbon membrane materials can remove and concentrate organic contaminants via an unusual liquid-phase membrane permeation modality. Surprisingly, detailed thermodynamic calculations on the chemical potential of the organic contaminant reveal that the organic species has a higher chemical potential on the permeate side of the membrane than on the feed side of the membrane. This unusual observation challenges conventional membrane transport theory that posits that all permeating species move from high chemical potential states to lower chemical potential states. Based on experimental measurements, we hypothesize that the organic is concentrated in the membrane relative to water via favorable binding interactions between the organic and the carbon membrane. The concentrated organic is then swept through the membrane via the bulk flow of water in a modality known as "sorp-vection." We highlight via simplified nonequilibrium thermodynamic models that this "uphill" chemical potential permeation of the organic does not result in second-law violations and can be deduced via measurements of the organic and water sorption and diffusion rates into the carbon membrane. Moreover, this work identifies the need to consider such nonidealities when incorporating unique, rigid materials for the separations of aqueous waste streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.