Abstract
Palladium nanoparticles, with core sizes of ca. 2.5 nm, were easily synthesized by chemical reduction of Na2PdCl4 in the presence of hydroxyethylammonium salts and proved to be efficient for the selective hydrogenolysis of various aromatic, alkylphenyl, aliphatic epoxides in water as green solvent. Capping agents of the metal species were screened to define the most suitable micellar nanoreactors on two target substrates of industrial interest, epoxystyrene and 7,8-epoxy-2-methoxy-2,6-dimethyloctane. In our conditions, the hydrogenolysis of epoxystyrene proved to be pH-dependent, producing either the diol under acidic conditions, or the sweet-smelling 2-phenylethanol in the presence of a base. Promisingly, 7,8-epoxy-2-methoxy-2,6-dimethyloctane was completely and selectively hydrogenated into Florsantol®, a sandalwood odorant at a multigram scale (40 g and up to 175g). A general mechanism for the palladium nanoparticles-catalyzed hydrogenolysis of terminal epoxides was proposed according to steric and electronic properties and finely corroborated with deuterium labelling experiments.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.