Abstract

Direct selective oxidative esterification of readily available alcohols under mild conditions is an attractive approach to synthesis valuable esters. Developing high performance catalyst is the key factor to the efficient esters synthesis. We report graphene supported Au-Pd alloy catalyst exhibits excellent catalytic performance in the synthesis of methyl benzoate from benzyl alcohol and methanol, a turnover frequency (TOF) of 230 h−1 and selectivity of 100% to methyl benzoate were achieved under 1 atm O2 at 25 °C, which is superior to the majority of the state-of-the-art catalysts. Experimentally observed volcano-like reactivity trends and DFT calculations prove the outstanding performance was mainly ascribed to unique electronic structures of AuPd alloy catalyst for the adsorption and activation of reactant molecules. The catalytic reaction mechanism for interpretation of the structure-activity relationships of various catalysts at molecular level was investigated. The present study could help to unravel the synergistic effect of Au-Pd catalyst and provides a mild and efficient route for synthesis high-value esters in terms of green and sustainable chemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.