Abstract

Boron nitride containing hydroxyl groups efficiently catalysed oxidative dehydrogenation of ethane to ethylene, offering rather high selectivity (95%) but only small amount of CO2 formation (0.4%) at a given ethane conversion of 11%. Even at high conversion level of 63%, the selectivity of ethylene retained at 80%, which is competitive with the energy-demanding industrialized steam cracking route. A long-term test for 200 h resulted in stable conversion and product selectivity, showing the excellent catalytic stability. Both experimental and computational studies have identified that the hydrogen abstraction of B-OH groups by molecular oxygen dynamically generated the active sites and triggered ethane dehydrogenation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call