Abstract
• Properties and morphology of the support play a significant role in the final Au-Pd particle size. • Nanostructured ceria is most effective in stabilizing Au-Pd colloidal NPs. • Au-Pd particle size and Ce 3+ in ceria are correlated with activity. • Au-Pd supported on ceria displays higher selectivity to benzaldehyde. Bimetallic Au-Pd NPs with a mean particle size of ca. 1.7 nm were prepared by colloidal synthesis with PVA as a stabilizer and immobilized on various ceria and titania nanostructures. The catalysts were characterised by TEM, XRD, XPS, ICP-AES, and their catalytic performance assessed in the solvent-less selective oxidation of benzyl alcohol. It is shown that even with a technique such as sol-immobilization, the final particle size is sensitive to the physiochemical properties and morphology of the support. In particular, ceria nanostructures were found to be more effective at stabilizing colloidal Au-Pd NPs than titania. Among the ceria nanostructured supports investigated, Au-Pd/ceria nanorods exhibited the highest catalytic activity (TOF > 34,700 h −1 ) and highest benzaldehyde yield. The particle size of the supported Au-Pd was found to be correlated with the surface area and concentration of Ce 3+ and oxygen vacancies in the ceria nanostructures. Overall, the catalytic activity of supported bimetallic Au-Pd catalysts is likely to be governed by a complex interplay of contributions from the particle size, and support morphology, structure and properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.