Abstract

The selective oxidation of methyl glycolate (MG) to methyl glyoxylate (MGO) using molecular oxygen in a fixed-bed reactor represents a greener and more efficient alternative to the traditional batch processing for producing this important fine chemical and intermediate. Despite its potential, detailed understanding of this catalytic reaction is still limited. In our study, VOx/γ-Al2O3 catalysts were identified as effective for the reaction, but their performance strongly depended on the structure of VOx species. The optimal catalyst with nearly monolayer dispersed VOx achieved a high MG conversion of 91% and an MGO selectivity of 71%, alongside maintaining stability for 300 h without noticeable deactivation. At a low V loading of 0.6%, isolated VOx species were formed, exhibiting the highest turnover frequency (TOF) but the lowest MGO selectivity. Increasing the V loading to 3.9% resulted in a blend of less polymeric and isolated VOx species, which decreased the TOF but enhanced MGO selectivity to 59%. With the V loading ranging from 5% to 6.2%, monolayer dispersed VOx became dominant, yielding a lower TOF and the highest MGO selectivity. A further increase in V loading caused the emergence of crystalline V2O5, which seemed to act as a bystander. Moreover, the redox cycles of V4+ and V5+ over the VOx/γ-Al2O3 catalyst played an important role in the selective oxidation of MG to MGO, while the overoxidation of MG to CO2 might take place through the V3+/V4+ redox pairs, the extent of which was determined by the structure of VOx species. These insights are crucial for developing high-performance VOx-based catalysts for the production of MGO through the selective oxidation of MG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call