Abstract

【The Fe/MgO catalysts with different Fe loadings (1, 4, 6, 15 and 30 wt% Fe) were prepared by a wet impregnation with iron nitrate as precursor. All of the catalysts were characterized by BET surface analyzer, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The maximum removal capacity of $H_2S$ was obtained with 15 wt% Fe/MgO catalyst which had the highest BET surface area among the measured catalysts. XRD of Fe/MgO catalysts showed that well dispersed Fe particles could be present on Fe/MgO with Fe loadings below 15 wt%. The crystallites of bulk $\alpha$ - $Fe_2O_3$ became evident on 30 wt% Fe/MgO, which were confirmed by XRD. TPR profiles showed that the reducibility of Fe/MgO was strongly related to the loaded amounts of Fe on MgO support. Therefore, the highest removal efficiency of $H_2S$ in wet oxidation could be ascribed to a good dispersion and high reducibility of Fe/MgO catalyst. XPS studies indicated that the $H_2S$ oxidation with Fe/MgO could proceed via the redox mechanism ( $Fe^{3+}\;{\leftrightarrow}\;Fe^{2+}$ ).】

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.