Abstract
Cu(III)2(μ-O)2 bis-oxides (O) form spontaneously by direct oxygenation of nitrogen-chelated Cu(I) species and constitute a diverse class of versatile 2e−/2H+ oxidants, but while these species have attracted attention as biomimetic models for dinuclear Cu enzymes, reactivity is typically limited to intramolecular ligand oxidation, and systems exhibiting synthetically useful reactivity with exogenous substrates are limited. OTMPD (TMPD = N1, N1, N3, N3-tetramethylpropane-1,3-diamine) presents an exception, readily oxidizing a diverse array of exogenous substrates, including primary alcohols and amines selectively over their secondary counterparts in good yields. Mechanistic and DFT analyses suggest substrate oxidation proceeds through initial axial coordination, followed by rate-limiting rotation to position the substrate in the Cu(III) equatorial plane, whereupon rapid deprotonation and oxidation by net hydride transfer occurs. Together, the results suggest the selectivity and broad substrate scope unique to OTMPD are best attributed to the combination of ligand flexibility, limited steric demands, and ligand oxidative stability. In keeping with the absence of rate-limiting CH scission, OTMPD exhibits a marked insensitivity to the strength of the substrate CαH bond, readily oxidizing benzyl alcohol and 1-octanol at near identical rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.