Abstract

Ruthenium-ion-catalyzed oxidation of a range of alkylated polyaromatics has been studied. 2-Ethylnaphthalene was used as a model substrate, and oxidation can be performed in either a conventional biphasic or in a monophasic solvent system. In either case the reaction rates and product selectivity are identical. The reaction products indicate that the aromatic ring system is oxidized in preference to the alkyl chain. This analysis is possible due to the development of a quantitative NMR protocol to determine the relative amounts of aliphatic and aromatic protons. From a systematic set of substrates we show that as the length of the alkyl chain substituent on a polyaromatic increases, the proportion of products in which the chain remains attached to the aromatic system increases. Larger polyaromatic systems, based on pyrene and phenanthrene, show greater reactivity than those with fewer aromatic rings, and the alkyl chains are more stable to oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.