Abstract

Various compositions of Cs promoted Mn catalysts were synthesized and investigated for selective oxidation of 5-HMF to DFF, among which Mn-Cs(80:20) was found to be most efficient giving 91 % conversion of 5-HMF and 99 % selectivity to DFF. Detail characterization like N2-sorption, BET surface area, TG-DTA, XRD, XPS, FE-SEM-EDX, TEM, HR-TEM, CO2-TPD, H2-TPR, O2-TPO, FTIR, Raman spectra and CH3OH-IR were done to establish structure-activity correlation. Enhanced surface area, porosity, thermal stability, dual morphologies were observed due to inclusion of Cs in Mn lattice domain which further enhanced the crystallinity, and oxygen diffusion on the surface. Mixed morphologies comprising nanoparticles (4–5 nm) and nanocubes (50–60 nm) were observed with enhanced redox potential and reduced work function due to weakening of Mn-O bonds. Significant increase in the basicity of catalyst, interfacial redox properties and lattice oxygen led to highly efficient oxidation of 5-HMF to DFF via Mars-van Krevelen mechanism at relatively milder conditions i.e. T = 90 °C and PO2= 200 psig. The catalyst was easily recyclable up to 7 times with minor loss in activity which was regenerated heat treatment protocol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.