Abstract

The level of endothelin-1 (ET-1), a potent vasoconstrictor, was associated with retinopathy under ischemia. The effects of endothelial endothelin-1 (ET-1) over-expression in a transgenic mouse model using Tie-1 promoter (TET-1 mice) on pathophysiological changes of retinal ischemia were investigated by intraluminal insertion of a microfilament up to middle cerebral artery (MCA) to transiently block the ophthalmic artery. Two-hour occlusion and twenty-two-hour reperfusion were performed in homozygous (Hm) TET-1 mice and their non-transgenic (NTg) littermates. Presence of pyknotic nuclei in ganglion cell layer (GCL) was investigated in paraffin sections of ipsilateral (ischemic) and contralateral (non-ischemic) retinae, followed by measurement of the thickness of inner retinal layer. Moreover, immunocytochemistry of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS) and aquaporin-4 (AQP4) peptides on retinal sections were performed to study glial cell reactivity, glutamate metabolism and water accumulation, respectively after retinal ischemia. Similar morphology was observed in the contralateral retinae of NTg and Hm TET-1 mice, whereas ipsilateral retina of NTg mice showed slight structural and cellular changes compared with the corresponding contralateral retina. Ipsilateral retinae of Hm TET-1 mice showed more significant changes when compared with ipsilateral retina of NTg mice, including more prominent cell death in GCL characterized by the presence of pyknotic nuclei, elevated GS immunoreactivity in Müller cell bodies and processes, increased AQP-4 immunoreactivity in Müller cell processes, and increased inner retinal thickness. Thus, over-expression of endothelial ET-1 in TET-1 mice may contribute to increased glutamate-induced neurotoxicity on neuronal cells and water accumulation in inner retina leading to edema.

Highlights

  • Diabetic retinopathy (DR) and other ocular diseases in diabetes, such as central retinal artery occlusion (CRAO) and glaucoma, is thought to be the consequence of retinal ischemia, leading to visual impairment and blindness [1]

  • The present study is to further investigate the effects of endothelial ET-1 in retinopathy after transient inner retinal ischemia and reperfusion of ophthalmic artery (OA) and central retinal artery (CRA) [17]

  • The ischemic model induced by middle cerebral artery occlusion resulted in a mild transient retinal ischemia with neuronal cell damage in mice with F1 hybrid background, as suggested by increased glial fibrillary acidic protein (GFAP) immunoreactivity in the Muller cell processes and astrocytes, and the presence of pyknotic nuclei in the cells in ganglion cell layer (GCL) in the NTg ipsilateral retinae

Read more

Summary

Introduction

Diabetic retinopathy (DR) and other ocular diseases in diabetes, such as central retinal artery occlusion (CRAO) and glaucoma, is thought to be the consequence of retinal ischemia, leading to visual impairment and blindness [1]. Administration of ET-1 into the posterior vitreous body or the optic nerve of animal models led to physiological and cellular damages of ischemic insult, including obstruction of retinal blood flow, elevated scotopic b-wave in electroretinogram and apoptosis of cells in GCL [10,11,12]. This is because the increased ET-1 concentration would elevate vitreous glutamate level [13] and augmented activities and responses to glutamate in the nuclei of the solitary tract (NTS) neurons [14], which may increase the excitotoxic effects of glutamate to neuronal cells. The hypertensive property of ET-1 was suggested to play a role in ischemic insult in retina

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call