Abstract

Glutamatergic and GABAergic neurons represent the neural components of the medial vestibular nuclei. We assessed the functional role of glutamatergic and GABAergic neuronal pathways arising from the vestibular nuclei (VN) in the maintenance of gait and balance by optogenetically stimulating the VN in VGluT2-cre and GAD2-cre mice. We demonstrate that glutamatergic, but not GABAergic VN neuronal subpopulation is responsible for immediate and strong posturo-locomotor deficits, comparable to unilateral vestibular deafferentation models. During optogenetic stimulation, the support surface dramatically increased in VNVGluT2+ mice, and rapidly fell back to baseline after stimulation, whilst it remained unchanged during similar stimulation of VNGAD2+ mice. This effect persisted when vestibular tactilo kinesthesic plantar inputs were removed. Posturo-locomotor alterations evoked in VNVGluT2+ animals were still present immediately after stimulation, while they disappeared 1 h later. Overall, these results indicate a fundamental role for VNVGluT2+ neurons in balance and posturo-locomotor functions, but not for VNGAD2+ neurons, in this specific context. This new optogenetic approach will be useful to characterize the role of the different VN neuronal populations involved in vestibular physiology and pathophysiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.