Abstract

AbstractThis study presents the implementation of an online model updating algorithm within a full‐scale hybrid simulation (HS) of a six story, four bay steel moment frame. The experimental substructure consists of a cruciform subassembly generating critical data on the nonlinear behavior of the first story column and two beams with reduced beam sections (RBSs) on each side. The updating algorithm focuses on the modeling parameters of plastic hinge elements representing the RBSs in the numerical model. A smooth plasticity model is utilized for beam plastic hinges with updating parameters identified from on‐line experimental data through a modified version of the unscented Kalman filter. The HS shows that the numerical beam hinges based on simple hysteretic model with updated parameters are able to capture the characteristic behavior observed in experiments. Due to fracture of beam flanges is observed in the experiments, a selective updating concept is proposed to allow for updating multiple numerical components accounting for asymmetric behavior and variability in the response. The selective updating method is validated through virtual HSs that are better able to identify and isolate the effects of fracture and other behavioral characteristics. The combination of results from physical and virtual tests highlights the benefits of model updating on the local and overall system‐level response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call