Abstract

A nitroxide carrying a peptide specific to the binding pocket of the serine proteases chymotrypsin and cathepsin G is prepared. This peptide is attached as an enol ester to the nitroxide. Upon enzymatic hydrolysis of the peptide, the enol ester moiety is transformed into a ketone moiety. This transformation affords a difference of 5 G in phosphorus hyperfine coupling constant between the electronic paramagnetic resonance (EPR) signals of each nitroxide. This property is used to monitor the enzymatic activity of chymotrypsin and cathepsin G by EPR. Michaelis constants were determined and match those reported for conventional optical probes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call