Abstract

A catalyzed conversion of terminal alkynes into dimers, trimers, and trisubstituted benzenes has been developed using the actinide amides U[N(SiMe3)2]3 (1) and [(Me3Si)2N]2An[κ2-(N,C)-CH2Si(CH3)N(SiMe3)] (An = U (2), Th (3)) as precatalysts. These complexes allow for preferential product formation according to the identity of the metal and the catalyst loading. While these complexes are known as valuable precursors for the preparation of various actinide complexes, this is the first demonstration of their use as catalysts for C–C bond forming reactions. At high uranium catalyst loading, the cycloaddition of the terminal alkyne is generally preferred, whereas at low loadings, linear oligomerization to form enynes is favored. The thorium metallacycle produces only organic enynes, suggesting the importance of the ability of uranium to form stabilizing interactions with arenes and related π-electron-containing intermediates. Kinetic, spectroscopic, and mechanistic data that inform the nature of the activation...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.