Abstract

Nuclear magnetic resonance imaging (MRI) of water and fat protons has been performed with a 1.5 T whole body imager. The highly selective excitation, necessary for the discrimination of the two proton species, has been achieved by different four and five pulse excitation schemes which had to be adapted to the needs of MRI and completed to imaging sequences. Their ability to produce well separated water and fat distribution images of test objects is demonstrated. The special features of the method such as signal-to-noise ratio, insensitivity to rf-field inhomogeneities, ease of implementation and data handling are discussed and compared to existing spectral separation techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call