Abstract

NO2 is one of the main greenhouse gases, which is mainly generated by the combustion of fossil fuels. In addition to its contribution to global warming, this gas is also directly dangerous to humans. The present work reports the structural and gas sensing properties of the CaCu3Ti4O12 compound prepared by the sol-gel technique. Rietveld refinement confirmed the formation of the pseudo-cubic CaCu3Ti4O12 compound, with less than 4 wt% of the secondary phases. The microstructural and elemental composition analysis were carried out using scanning electron microscopy and X-ray energy dispersive spectroscopy, respectively, while the elemental oxidation states of the samples were determined by X-ray photoelectron spectroscopy. The gas sensing response of the samples was performed for different concentrations of NO2, H2, CO, C2H2 and C2H4 at temperatures between 100 and 300 °C. The materials exhibited selectivity for NO2, showing a greater sensor signal at 250 °C, which was correlated with the highest concentration of nitrite and nitrate species on the CCTO surface using DRIFT spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.