Abstract
Polycrystalline silicon (poly‐Si) is widely used as a gate layer in integrated circuits, transistors, and channels through nanofabrication. Nanoremoval and roughness control are required for nanomanufacturing of various electronic devices. Herein, a nanoscale removal method is developed to overcome the limitations of microcracks, complex procedures, and time‐consuming conventional fabrication and lithography methods. The method is implemented with a mechanically induced poly‐Si phase transition using atomic force microscope (AFM). Mechanical force induces the covalent bonds between silicon and fluorine atoms which cause the phase transition of poly‐Si. Then, the bond structure of the Si molecules is weakened and selectively removed by nano‐Newton‐scale force using AFM. A selective nanoscale removal with roughness control is implemented in 0.5 mM TBAF solution after mechanical force (43.58–58.21 nN) is applied. By the magnitude of nano‐Newton force, the removal depth of poly‐Si is controlled from 2.66 to 21.52 nm. Finally, the nanoscale fabrication on poly‐Si wafer is achieved. The proposed nanoremoval mechanism is a simple fabrication method that provides selective, nanoscale, and highly efficient removal with roughness control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.