Abstract

Nanoparticles produced in low-temperature plasmas (LTPs) are often found with crystalline structure, which suggests rather high temperatures during synthesis. This even applies to particles of high-melting-point materials, which is surprising, because the gas temperature in LTPs is often close to room temperature and particles may reside in the plasma only for a few milliseconds. In this paper, we present a numerical study of nanoparticle heating in plasmas through energetic surface reactions. We find that, under realistic plasma conditions, particle temperatures can exceed the gas temperature by many hundreds of kelvins. However, as the particle temperature is highly unsteady, it is more reasonable to consider particle temperature distribution functions. The dependence of the particle temperature distribution on particle size and particle density in a dusty LTP is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.