Abstract
Effects of strength training (ST) for 21 wk were examined in 10 older women (64 +/- 3 yr). Electromyogram, maximal isometric force, one-repetition maximum strength, and rate of force development of the leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris (QF) and of vastus lateralis (VL), medialis (VM), intermedius (VI) and rectus femoris (RF) throughout the lengths of 3/12--12/15 (Lf) of the femur, muscle fiber proportion and areas of types I, IIa, and IIb of the VL were evaluated. Serum hormone concentrations of testosterone, growth hormone (GH), cortisol, and IGF-I were analyzed for the resting, preexercise, and postexercise conditions. After the 21-wk ST, maximal force increased by 37% (P < 0.001) and 1-RM by 29% (P < 0.001), accompanied by an increase (P < 0.01) in rate of force development. The integrated electromyograms of the vastus muscles increased (P < 0.05). The CSA of the total QF increased (P < 0.05) throughout the length of the femur by 5--9%. The increases were significant (P < 0.05) at 7/15--12/15 Lf for VL and at 3/15--8/15 Lf for VM, at 5/15--9/15 for VI and at 9/15 (P < 0.05) for RF. The fiber areas of type I (P < 0.05), IIa (P < 0.001), and IIb (P < 0.001) increased by 22--36%. No changes occurred during ST in serum basal concentrations of the hormones examined, but the level of testosterone correlated with the changes in the CSA of the QF (r = 0.64, P < 0.05). An acute increase of GH (P < 0.05), remaining elevated up to 30 min (P < 0.05) postloading, was observed only at posttraining. Both neural adaptations and the capacity of skeletal muscle to undergo training-induced hypertrophy even in older women explain the strength gains. The increases in the CSA of the QF occurred throughout its length but differed selectively between the individual muscles. The serum concentrations of hormones remained unaltered, but a low level of testosterone may be a limiting factor in training-induced muscle hypertrophy. The magnitude and time duration of the acute GH response may be important physiological indicators of anabolic adaptations during strength training even in older women.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.