Abstract

A natural gas (NG) odorization system requires continuous monitoring as well as an optimal injection to satisfy the odorization guidelines, minimize over-odorization, and prevent hazardous gas leaks. NG consists of hydrocarbons such as methane, odorants such as tert-butyl mercaptan, and other sulphur-based VOCs such as hydrogen sulphide; therefore, selectivity is paramount for the reliable and accurate monitoring of odorants. In this study, we developed a portable device integrated with an array of five different sensors to detect a mixture of tert-butyl mercaptan and methyl ethyl sulphide for a concentration range of 1 ppm to 10 ppm. A machine learning model was developed to predict the presence and concentration of NG odorants from the sensor data. The best-performing sensors in the array achieved high sensitivity and selectivity indicators (measured using the Davies-Bouldin index) of 0.3667 (1⁄ppm) and 0.125, respectively. The sensor system achieved a classification accuracy of 98.75% between NG odorants and hydrogen sulphide, with an overall Mean Squared Error (MSE) and R2 error (for the regression model) of 0.50 and 95.16%. These results indicate that the developed portable device and the machine learning model have promising applications for the selective monitoring of NG odorants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.