Abstract
The sources and chemical compositions of organic aerosol (OA) exert a significant influence on both regional and global atmospheric conditions, thereby having far-reaching implications on environmental chemistry. However, existing mass spectrometry (MS) methods have limitations in characterizing the detailed composition of OA due to selective ionization as well as fractionation during cold-water extraction and solid-phase extraction (SPE). A comprehensive MS study was conducted using aerosol samples collected on dusty, clean, and polluted days. To supplement the data obtained from electrospray ionization (ESI), a strategy for analyzing OAs collected using the quartz fiber filter directly utilizing laser desorption ionization (LDI) was employed. Additionally, the ESI method was conducted to explore suitable approaches for determining various OA compositions from samples collected on dusty, clean, and polluted days. In situ LDI has the advantages of significantly reducing the sample volume, simplifying sample preparation, and overcoming the problem of overestimating sulfur-containing compounds usually encountered in ESI. It is suitable for the characterization of highly unsaturated and hydrophobic aerosols, such as brown carbon-type compounds with low volatility and high stability, which is supplementary to ESI. Compared with other ionization methods, in situ LDI helps provide a complementary description of the molecular compositions of OAs, especially for analyzing OAs in polluted day samples. This method may contribute to a more comprehensive MS analysis of the elusive compositions and sources of OA in the atmosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.