Abstract

BackgroundAdiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue.Materials and MethodsWe examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells.ResultsThe Wnt5b, Wnt6, Frizzled 6 (Fzd6), and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6) were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII) and phosphorylated Jun N-terminal kinase (p-JNK) were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin.ConclusionChronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors accompanied by the inhibition of the Wnt/Ca2+ and JNK signaling pathways, which may be involved in the altered adipocyte cellularity, endogenous adiponectin production, and anti-inflammatory action induced by hyperadiponectinemia.

Highlights

  • Visceral adipose tissue in metabolic syndrome is histologically characterized by enlargement of adipocytes due to impaired adipocyte differentiation, accompanied by chronic low-grade inflammation

  • The Wnt5b, Wnt6, Frizzled 6 (Fzd6), and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptorrelated protein 6 (Lrp6) were reduced

  • Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors accompanied by the inhibition of the Wnt/Ca2+ and Jun N-terminal kinase (JNK) signaling pathways, which may be involved in the altered adipocyte cellularity, endogenous adiponectin production, and anti-inflammatory action induced by hyperadiponectinemia

Read more

Summary

Introduction

Visceral adipose tissue in metabolic syndrome is histologically characterized by enlargement of adipocytes due to impaired adipocyte differentiation, accompanied by chronic low-grade inflammation. The hyperadiponectinemic mice show higher sensitivity to insulin, longer life span and resistance to the deleterious effects of a high-fat/high-sugar diet. Adipocytes of the transgenic mice are reduced in size and increased in number compared with those of wild-type mice in both subcutaneous and visceral adipose tissues, suggesting that adiponectin may play a role in the regulation of adipogenesis. Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.