Abstract

We previously demonstrated that nonesterified as well as esterified eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) inhibit U46619-induced platelet aggregation and [3H]U46619 specific binding to washed human platelets. It was also demonstrated that esterification of these fatty acids resulted in a decrease in the affinity of [3H]U46619 for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor. In order to investigate the specificity of this inhibition, the effects of 20:5n-3 and 22:6n-3 on the function and binding of the platelet alpha 2-adrenergic receptor were studied. It was found that neither 20:5n-3 nor 22:6n-3 (nonesterified or esterified) altered epinephrine-induced aggregation or [3H]yohimbine specific binding. Moreover, Scatchard analysis revealed that esterification with either 20:5n-3 or 22:6n-3 did not alter the dissociation constant for [3H]yohimbine binding. Modulation of the TXA2/PGH2 receptor by 20:5n-3 and 22:6n-3 was next evaluated using CHAPS- and digitonin-solubilized platelet membranes. [3H]SQ29,548 dissociation constants of 26.5 nM and 20.8 nM were measured for CHAPS and digitonin-solubilized membranes, respectively. Competitive binding experiments in these solubilized preparations revealed that 20:5n-3 or 22:6n-3 blocked [3H] SQ29,548 binding with IC50 values in the range of 6-15 microM, while concentrations of these fatty acids of up to 100 microM showed no effect on [3H]yohimbine binding. On the other hand, the IC50 values for inhibition of [3H] SQ29,548 binding by linoleic acid (18:2n-6) and gamma-linolenic acid (18:3n-6) were in the range of 150 microM. Furthermore, 18:2n-6 and 18:3n-6 showed similar inhibitory effects on [3H]yohimbine binding. Finally, competition binding studies performed in a partially purified TXA2/PGH2 receptor preparation also demonstrated inhibition of [3H]SQ29,548 binding by 20:5n-3 and 22:6n-3. Collectively, these findings support the notion that 20:5n-3 and 22:6n-3 can selectively and directly modulate TXA2/PGH2 receptor function, and that this mechanism of action may contribute to the antiplatelet activity associated with diets rich in these fatty acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call